Analytical Instrument Documents

A mass spectrometer works by using magnetic and electric fields to exert forces on charged particles (ions) in a vacuum. Therefore, a compound must be charged or ionized to be analyzed by a mass spectrometer. Furthermore, the ions must be introduced in the gas phase into the vacuum system of the mass spectrometer. This is easily done for gaseous or heat-volatile samples. However, many (thermally labile) analytes decompose upon heating. These kinds of samples require either desorption or desolvation methods if they are to be analyzed by mass spectrometry. Although ionization and desorption/desolvation are usually separate processes, the term "ionization method" is commonly used to refer to both ionization and desorption (or desolvation) methods. The choice of ionization method depends on the nature of the sample and the type of information required from the analysis. So-called 'soft ionization' methods such as field desorption and electrospray ionization tend to produce mass spectra with little or no fragment-ion content.

Double-focusing magnetic sector mass spectrometers provide high sensitivity, high resolution, and a reproducibility that is unmatched in any other kind of mass analyzer.

Tandem mass spectrometry is a powerful tool for polymer characterization. It can obtain information about polymer end groups, repeating structures (linear, cyclic, or branched), and copolymerization. High-energy collision–induced dissociation (HE-CID) is a fragmentation method that is available only in tandem time-of-flight mass spectrometry (TOF–TOF). The informative fragmentation channels, which are difficult to observe with commonly used low-energy CID, are often observable in HE-CID spectra. In MSTips 270, we proposed a method to visualize this abundant structural information and enable intuitive analysis using the “Remainders of KM” (RKM) plot method. In this report, we applied the method to analyze polyethylene oxide (PEO) with different end groups.

The JMS-S3000 “SpiralTOF™” is a MALDI-TOFMS that incorporates an innovative SpiralTOF ion optics system. This system is available with a TOF-TOF option that can acquire high-energy collision-induced dissociation (CID) product ion spectra for monoisotopically selected precursor ions. In this work, we analyzed Poly Methyl Methacrylate (PMMA) shown in Fig. 1 by using the JMS-S3000 SpiralTOF with the TOF-TOF option. The resulting high-energy CID data was then processed using the Polymerix™ (Sierra Analytics, Inc., http://massspec. com/) analysis software.

Various kinds of additives are used in a polymer, such as an antioxidant, a light stabilizer, and an ultraviolet absorber. Because a polymer’s properties depend on the additives in the raw material, it is important to understand these additives. Matrix-assistance laser desorption/ ionization time-of-flight mass spectrometer (MALDI-TOFMS) JMS-S3000 SpiralTOF™ is widely used in polymer analysis. High-energy collision–induced dissociation (HE-CID) measurement with the TOF-TOF option is also useful in analyzing the structures of additives. SpiralTOF™ can achieve a high precursor ion selection with a revolution of 17 m. Fragmentation derived from HE-CID can be observed only due to the ions from post-source decay (PSD), these fragment ions can be eliminated by the four electrostatic sectors that constitute the spiral trajectory. In this Applications Note, we report on polymer structural analysis by compare fragmentation patterns in the product ion spectra of IRGANOX 1076 M+・ and [M+Na]+.

The JMS-S3000 SpiralTOF™ is a MALDI-TOF MS that uses an innovative spiral ion optical system to achieve the highest resolution currently available for a MALDI instrument. Additionally, this system can be equipped with a TOF-TOF option that can acquire high-energy collisioninduced dissociation (HE-CID) product ion spectra for monoisotopically selected precursor ions. The resulting HE-CID product ion spectra provide detailed structural information about compounds like triglycerides by means of charge-remote fragmentation (CRF).1 Tristearin is a triglyceride found in fats that consists of three stearic acid moieties (Fig. 1). In this work, we report the structural analysis of tristearin by using the HE-CID capabilities of the SpiralTOF-TOF.

The JMS-S3000 “SpiralTOF™” is a MALDI-TOF MS that uses an innovative spiral ion optical system to achieve the highest resolution currently available for a MALDI instrument. Additionally, this system can be equipped with a TOF-TOF option that can acquire high-energy collisioninduced dissociation (HE-CID) product ion spectra for monoisotopically selected precursor ions. The resulting HE-CID product ion spectra provide detailed structural information about compounds like triglycerides by means of charge-remote fragmentation (CRF). In this work, we report the structural analysis of triolein, a triglyceride that contains 3 oleic acid moieties (Fig. 1), by using HE-CID capabilities of the SpiralTOF-TOF.

In previous work, we showed that the JEOL SpiralTOFTOF system’s high-energy collision-induced dissociation (HE-CID) is useful for the structural analysis of triglycerides. The resulting HE-CID mass spectra provided detailed information about the fatty acid moieties such as the positions of double bonds, branching, hydroxylation, and oxidation by means of charge-remote fragmentation (CRF). In this work, we report the structural analysis of oxidized triglycerides by HE-CID using the SpiralTOFTOF.

The JMS-S3000 SpiralTOF™, which has a JEOL-patented spiral orbital ion optical system, has a long-flight distance of 17 m and can achieve high-mass resolution. In addition, the electrostatic sectors that constitute the ion optical system can exclude PSD ions, making it possible to acquire a mass spectrum that is less affected by background ions. These features enable accurate mass measurement even in LMW regions[1].

The JMS-S3000 SpiralTOF™ is a MALDI-TOF MS that uses an innovative spiral ion optics system to achieve the highest resolution currently available for a MALDI instrument. Additionally, the JMS-S3000 is available with a TOF-TOF option that acquires high-energy collision-induced dissociation (CID) product-ion spectra for monoisotopically selected precursor ions. In this work, we analyzed a high molecular weight peptide by using the JMS-S3000 SpiralTOF with the TOF-TOF option.

rss

Other Resources

Walkup NMR
  • See how the Delta NMR software allows users to just "walk up" and start NMR experiments
  • Mass Spec Reference Data
  • View our page of useful molecular references for Mass Spec
  • Tutorials (Mass Spec)
  • Documents on the basics of mass spectrometry
  • Delta NMR software Tutorials
  • Videos on how to use the Delta NMR software
  • No-D NMR
  • Description of No-D NMR and how it can be used to eliminate the need for deuterated solvents
  • Non Uniform Sampling (NUS)
  • Description of how NUS is used to greatly reduce the time needed for running NMR experiments
  • NMR Basics
  • Overview of the Basics of NMR Theory
  • NMR Magnet Destruction
  • See our presentation of the slicing open of a JEOL Delta-GSX 270 MHz NMR Magnet
  • NMR Training
    Basic Operations and System Management for JEOL NMR Users
    Mass Spec Training
    Learn more about spectrometer operation and maintenance, data collection and processing, and advanced MS software operation.
    JEOLink NMR Newsletter
    We publish and send out this NMR newsletter to our customers. They can also be viewed here.
    Mass Media Newsletter
    We publish and send out this Mass Spec newsletter to our customers. They can also be viewed here.
    © Copyright 2024 by JEOL USA, Inc.
    Terms of Use
    |
    Privacy Policy
    |
    Cookie Preferences