Analytical Instrument Documents

As polymer materials have become more complex and diverse, the details of their chemical composition have become more critical for the end users. This knowledge allows manufacturers and users to understand the effects of incorporating these polymer materials into their products. Additionally, it is critical to also have tools that can quickly compare two-samples to each other like conventional materials versus alternative materials, new products versus old products, and good products versus defective products.

Dioxins are a general term for polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). Their structures consist of two chlorinated rings. Many congeners differ in terms of number of chlorine atoms and binding sites (Fig. 1). These substances are considered as persistent organic pollutants (POPS) due to their presence in the environment and the health risks associated. A World Health Organization (WHO) study has demonstrated the health risks (carcinogenic and immunotoxic) when population are exposed to them. In addition, dioxins have been regulated by the Stockholm convention on POPs in May 2001. In particular, 17 substances have to be monitored because they are regulated (7 PCDDs and 10 PCDFs). The highest toxic compound is the 2378-TeCDD. Currently, dioxins analysis can be done not only using GC-HRMS but also with GC-MS/MS according to European commission regulation (EU644/2017). Especially, GC-triple quadrupole MS is interesting in terms of handling, instrument size and operating costs. Recently, JEOL has developed a new GC-triple quadrupole MS (JMS-TQ4000GC) and a new dedicated dioxins analysis software called TQ-DioK. In this study, we evaluated JMS-TQ4000GC with TQ-DioK using dioxins standard samples.

Analysis of Pesticides in Spinach Purchased from Local Grocers Using Triple-Quadrupole GC-MS/MS Analysis

Analysis of Pesticides in Kale Purchased from Local Grocers Using Triple-Quadrupole GC-MS/MS Analysis

Analysis of Pesticides in Honey Using QuEChERS Extraction and Triple-Quadrupole GC-MS/MS Analysis

Advanced statistical analysis of MALDI MS imaging data acquired by SpiralTOF™-plus while taking full advantage of its high mass-resolving power

Terpenes are a classification of aromatic compounds that are nearly ubiquitous throughout nature. Terpenes are primarily found in plants, but can also be observed in marine organisms, insects, and, to a lesser extent, higher-order animals. They are present in cannabis in significant concentrations and are one of the most interesting and diverse aspects of cannabis. They provide the unique aroma of the plant and are critical to the cannabis experience; however, understanding the role that they play in the psychoactive experience of cannabis consumption is still not well understood. Terpenes themselves are built from repeating five-carbon units called isoprene. Their classification as a monoterpene, diterpene, etc., is dependent on the number of isoprene units in their structure. Terpene content in cannabis is typically not regulated, but can provide unique insights into the “flavor profile” of the cannabis flower. Demand for terpene testing has increased significantly in the past few years as consumers become increasingly interested in the terpene profiles of the cannabis strains they consume. Cannabis has a high abundance of mono- and sesquiterpenes, and the majority of terpenes present in the flower fall into these classifications. This study presents a comprehensive gas chromatography- mass spectrometry (GC-MS) method for the analysis of 22 terpenes in cannabis flower, with a focus on developing a rapid and robust method for the analysis of terpenes in a commercial laboratory.

Gas chromatography combined with high-resolution time-of-flight mass spectrometry (GC-HRTOFMS) is a powerful tool for the analysis of complex mixtures. The AccuTOF GC-Alpha (JMS-T2000GC) mass spectrom-eter is fast, accurate and sensitive with high mass-resolving power and high mass accuracy.

The composition of volatiles from freshly ground roasted coffee is complex, with hundreds of chemical compounds contributing to the aroma. Headspace solid-phase microextraction was used to sample volatiles from five different coffees for analysis by GC-MS. Chemometric analysis revealed specific differences between coffees from different origins and different preparations.

Non-targeted analysis of complex mixtures by GC-HRMS should make use of all of the available data to identify unknowns. An automated data analysis software package combining chromatographic deconvolution with integrated analysis of high-resolution mass spectra for electron ionization (EI) and soft ionization measurements is applied to the identification of trace impurities in a fine chemical (triphenylphosphine).

rss

Other Resources

Walkup NMR
  • See how the Delta NMR software allows users to just "walk up" and start NMR experiments
  • Mass Spec Reference Data
  • View our page of useful molecular references for Mass Spec
  • Tutorials (Mass Spec)
  • Documents on the basics of mass spectrometry
  • Delta NMR software Tutorials
  • Videos on how to use the Delta NMR software
  • No-D NMR
  • Description of No-D NMR and how it can be used to eliminate the need for deuterated solvents
  • Non Uniform Sampling (NUS)
  • Description of how NUS is used to greatly reduce the time needed for running NMR experiments
  • NMR Basics
  • Overview of the Basics of NMR Theory
  • NMR Magnet Destruction
  • See our presentation of the slicing open of a JEOL Delta-GSX 270 MHz NMR Magnet
  • NMR Training
    Basic Operations and System Management for JEOL NMR Users
    Mass Spec Training
    Learn more about spectrometer operation and maintenance, data collection and processing, and advanced MS software operation.
    JEOLink NMR Newsletter
    We publish and send out this NMR newsletter to our customers. They can also be viewed here.
    Mass Media Newsletter
    We publish and send out this Mass Spec newsletter to our customers. They can also be viewed here.
    © Copyright 2024 by JEOL USA, Inc.
    Terms of Use
    |
    Privacy Policy
    |
    Cookie Preferences