GC–TOF-MS and DART–TOF-MS: Challenges in the Analysis of Soft Drinks
The potential of the time-of-flight mass spectrometry (TOF-MS) to innovate the analysis of soft drinks is described using gas chromatography (GC) hyphenated to TOF-MS and a new type of ion source, direct analysis in real time (DART), coupled to high-resolution TOF-MS. Head-space solid-phase microextraction (SPME) was used to isolate/extract volatile compounds followed by GC–TOF-MS to identify tainted compound in contaminated soft drinks. Direct analysis in real time–time-of-flight mass spectrometry (DART–TOF-MS) was also used to obtain negative and positive ion profiles of different soft drinks to determine the presence of various compounds, including antimicrobial preservatives, artificial sweeteners, acidulants and saccharides, without any sample preparation and chromatographic separation.
Techniques involving mass spectrometry (MS) as a detection tool in food analysis have evolved substantially. Gas chromatography–mass spectrometry (GC–MS) and liquid chromatography–mass spectrometry (LC–MS) are commonly used to detect, identify, quantify and confirm both natural and xenobiotic substances in the food production chain. One of the most distinctive trends in MS-based analysis is the use of time-of-flight mass spectrometry (TOF-MS) for both target and non-target analysis of a wide range of organic compounds that occur in biotic matrices.
High-speed unit resolution TOF-MS instruments can be combined with a fast one-dimensional GC and/or comprehensive two-dimensional GC (GCxGC) set-up with “flash” separation in the second dimension to identify and quantify a wide range of compounds present in complex food matrices. Whereas, the high-resolution TOF-MS instruments allow accurate mass measurement to calculate analyte elemental composition for the identification of “unknown” compounds and/or confirm the target analyte identity.