Electron Optic Documents

Utilizing Monte Carlo Modeling of electron trajectories Electron Flight Simulator is a software tool designed to make your job easier. It can help you understand difficult samples, show the best way to run an analysis, and help explain results to others. With it you can see how the electron beam penetrates your sample, and where the X-ray signal comes from, for a wide variety of microscope conditions. You can model multiple layers, particles, defects, inclusions, and cross-sections. Any sample chemistry can be modeled.

JEOL’s in column Upper Electron Detector (Through The Lens Detector) provides not only ultra-high resolution imaging but also includes a user selectable energy filter allowing the user to study a sample under different contrast mechanisms. For example, this energy filter allows the user to select low energy secondary electrons (SE) to enhance topographic features or high energy backscatter electrons (BSE) to highlight atomic number contrast. This detector is especially useful at lower kVs.

In the last decade there has been a quantum leap in the ability of scanning electron microscopes to observe a variety of materials and biological specimens with ultrahigh resolution and exceptional surface detail, in particular employing low voltage SEM. Low voltage imaging has become a key technique for charge control and reduction, especially in the cases where no surface modification (for example conductive coating) can be employed to alleviate specimen charging during SEM observation.

One of the main imaging artifacts generated during specimen observation in SEM is specimen charging. The effect of charging manifests itself either via ‘flattening’ of the image due to the beam deflection close to the source of charging, or extremely high or low contrast and image distortion. This artifact can be substantially reduced by either application of conductive coating to the sample or by lowering the primary beam voltage. Contemporary FE-SEMs have the ability to produce nm size spot sizes even at 1kV and below, paving the way for high resolution imaging and analysis of nanomaterials and surfaces without the need for conductive coating.

Graphene is a crystalline form of carbon defined as a hexagonal arrangement of carbon atoms in a one-atom thick planar sheet. Graphene has outstanding properties (mainly mechanical strength, optical transparency and excellent electrical and heat conductivity) that make it an attractive material for electronics applications. Traditionally, graphene structures have been imaged with aberration-corrected TEM, AFM, or STM.

JEOL SEMs are delivered with the capability for remote viewing and remote operation. The SEM computer includes a 2nd ethernet card for connection to your local area network. There is no need for a second support computer. Just connect your JEOL SEM computer to a reliable and fast broadband internet connection and choose the software platform that meets your remote access requirements.

JSM-IT800HL Brochure

The applications for lithium ion batteries (LIB) cover a wide range, from power sources for personal computers and mobile devices to automobiles, and there is always a demand for even better performance and safety. In order to ensure the performance and quality of LIB, analysis and evaluation using high-performance assessment systems is necessary. JEOL offers a full line-up of equipment to support the development of new LIB technologies and to improve product quality, including instruments for morphology observation and surface analysis, chemical analysis systems to perform structural analysis on a molecular level, as well as fabrication systems to create high-performance coatings and powders. This LIB note offers solutions for researchers and engineers who are looking for the best equipment for their application.

The SHL is a newly designed objective lens for high-resolution observation at low accelerating voltages. Unlike the semi-in lens SEM, with a large electromagnetic field below the lens, which was widely used for high-resolution, low kV observation, the SHL achieves high resolution by superimposing a magnetic field onto the electrostatic field to suppress magnetic field leakage. Therefore, the SHL is suitable for the high resolution observation of magnetic materials and electron backscattered diffraction (EBSD) even at short WD, which were difficult with the semi-in lens type SEMs. The SHL type SEM can also be configured for low vacuum operation while the semi-in lens type cannot.

STEM-in-SEM (Scanning Transmission Electron Microscopy in an SEM) has become a popular technique for biologists, polymer scientists and materials scientists for its ease of use, cost effectiveness and high resolution. It is especially suited to investigation of the internal structure of thin film (50-100nm) samples as well as size and shape of submicron to nanometer particles. With standard SEM imaging modes and EDS analysis on bulk samples, there are limitations in the ultimate resolution that can be achieved due in part to the beam-sample interactions. With STEM-in-SEM, the sample is very thin and the interaction volume is greatly reduced, which allows for sub-nanometer resolution and nanoscale analysis. One of the main challenges to EDS analysis using STEM-in-SEM is how to reduce the hard X-ray contribution from the detector and chamber (generally peaks from Al and Si). JEOL has designed a dedicated Analytical holder with a carbon retainer that greatly reduces these spurious peaks allowing for more accurate analytical data.

rss

Other Resources

  • Image Gallery
    View a selection of electron images
  • FAQs
    See answers from questions often asked about our SEM and Surface Analysis instruments
  • Links & Resources
    View our page of useful and interesting links to various electron microscopy resources
  • Videos
    View some product presentations of our instruments
  • SEM Theory and SEM Training
    Learn about basic theory, physical operation, and practical applications for SEM
    Basics of SEM
    Learn about the basics of scanning electron microscopy
    JEOLink Newsletter
    Several times a year, we publish and send out a newsletter to our customers. They can also be viewed here
    © Copyright 2024 by JEOL USA, Inc.
    Terms of Use
    |
    Privacy Policy
    |
    Cookie Preferences