Electron Optic Documents

What makes the difference between a good SEM image and a stellar one? Imaging samples at the appropriate conditions, and that often means at very low accelerating voltage (low kV). It's time to give it a try! Every modern day scanning electron microscope (SEM) from the top of the line, ultra-high resolution field emission SEMs to the most economical entry level bench-top tungsten (W) thermionic SEMs have the capability of imaging samples at very low accelerating voltage (Low kV ). Low kV imaging has many benefits and this easily accessible function should not be overlooked.

STEM-in-SEM (Scanning Transmission Electron Microscopy in an SEM) has become a popular technique for biologists, polymer scientists and materials scientists for its ease of use, cost effectiveness and high resolution. It is especially suited to investigating the internal structure of thin film (100-200nm) samples as well as size and shape of submicron to nanometer particles. With standard SEM imaging modes on bulk samples, there are limitations in the ultimate resolution that can be achieved due in part by the beam-sample interactions. With STEM-in-SEM, the sample is very thin and the interaction volume is small. Therefore, the resolution more closely approximates the diameter of the electron beam at the exit surface of the sample allowing for high resolution; using STEM with our state of the art FE SEMs, sub-nanometer resolution is easily achieved.

STEM-in-SEM (Scanning Transmission Electron Microscopy in an SEM) has become a popular technique for biologists, polymer scientists and materials scientists for its ease of use, cost effectiveness and high resolution. It is especially suited to investigating the internal structure of thin film (100-200nm) samples as well as size and shape of submicron to nanometer particles. With standard SEM imaging modes on bulk samples, there are limitations in the ultimate resolution that can be achieved due in part by the beam-sample interactions. With STEM-in-SEM, the sample is very thin and the interaction volume is small. Therefore, the resolution more closely approximates the diameter of the electron beam at the exit surface of the sample allowing for high resolution; using STEM with our state of the art FE SEMs, sub-nanometer resolution is easily achieved.

rss

Other Resources

  • Image Gallery
    View a selection of electron images
  • FAQs
    See answers from questions often asked about our SEM and Surface Analysis instruments
  • Links & Resources
    View our page of useful and interesting links to various electron microscopy resources
  • Videos
    View some product presentations of our instruments
  • SEM Theory and SEM Training
    Learn about basic theory, physical operation, and practical applications for SEM
    Basics of SEM
    Learn about the basics of scanning electron microscopy
    JEOLink Newsletter
    Several times a year, we publish and send out a newsletter to our customers. They can also be viewed here
    © Copyright 2024 by JEOL USA, Inc.
    Terms of Use
    |
    Privacy Policy
    |
    Cookie Preferences