Electron Optic Documents

JEOL now offers both simple and advanced automation solutions, giving users the capability to develop protocols that fit their exact imaging needs. When paired with best-in- class AI-driven auto-function technology (auto focus, auto astigmatism correction, auto brightness/contrast), JEOL’s automation solutions are fast, reliable, reproducible, and applicable to a wide range of applications.

The holy grail of nanoscale analysis with EDS is to quickly analyze any features which can be imaged in the SEM. However, for nanoscale features this is complicated by that fact that X-ray spatial resolution is typically larger than SEM imaging resolution. Figure 1 shows EDS maps from an integrated circuit cross section at 15kV and 6kV using a W SEM and an FE SEM, as well as the approximate X-ray signal depths at those voltages.

JEOL’s large chamber SEMs are designed for easy access in both the Tungsten SEM and Thermal Schottky Field Emission SEM models. Our large, direct-access sample chambers are ideal suited for the labs that require high-throughput and multi-sample imaging and analysis, multiple ports to fit a variety of accessories, and analysis of large samples that cannot be cut to size.

Wet specimens are notoriously difficult to image in scanning electron microscopes (SEM) owing to evaporation from the required vacuum of the specimen chamber. Traditionally, this issue has been addressed by increasing the specimen chamber pressure. Unfortunately, observation under high specimen chamber pressure cannot prevent the initial evaporation effects. The wet cover method, where the original surface water is retained (and, therefore, considered wet), provides a way to introduce and subsequently image specimens that are sensitive to evaporation within a SEM, while preventing evaporation-related damage, and to observe interesting specimen–water interactions.

Phase Analysis provides a new level of automation to your JEOL EDS data analysis and interpretation workflows

SEM is an indispensable tool for studying the microstructure of a wide variety of materials. The images generated are inherently a 2 dimensional representation of the sample surface. Unlocking the 3rd dimension by reconstructing a 3D model from multiple SEM images can enhance our understanding of complex microstructure. This 3D view is often more intuitive and surface metrology characteristics can be calculated.

rss

Other Resources

  • Image Gallery
    View a selection of electron images
  • FAQs
    See answers from questions often asked about our SEM and Surface Analysis instruments
  • Links & Resources
    View our page of useful and interesting links to various electron microscopy resources
  • Videos
    View some product presentations of our instruments
  • SEM Theory and SEM Training
    Learn about basic theory, physical operation, and practical applications for SEM
    Basics of SEM
    Learn about the basics of scanning electron microscopy
    JEOLink Newsletter
    Several times a year, we publish and send out a newsletter to our customers. They can also be viewed here
    © Copyright 2024 by JEOL USA, Inc.
    Terms of Use
    |
    Privacy Policy
    |
    Cookie Preferences