Electron Optic Documents

JEOL Resources

rss

Documents of interest in support of your JEOL product

CRYO ARM Bibliography

JEOL CRYO ARM 200 - BIBLIOGRAPHY

  1. Štěrbová, Petra et al. “Molecular Mechanism of pH-Induced Protrusion Configuration Switching in Piscine Betanodavirus Implies a Novel Antiviral Strategy.” ACS infectious diseases vol. 10,9 (2024): 3304-3319. doi:10.1021/acsinfecdis.4c00407
  2. Tarău, Daniela et al. “Structural basis of archaeal RNA polymerase transcription elongation and Spt4/5 recruitment.” Nucleic acids research vol. 52,10 (2024): 6017-6035. doi:10.1093/nar/gkae282
  3. Young, Lucy C et al. “Destabilizing NF1 variants act in a dominant negative manner through neurofibromin dimerization.” Proceedings of the National Academy of Sciences of the United States of America vol. 120,5 (2023): e2208960120. doi:10.1073/pnas.2208960120
  4. Pöll, Gisela et al. “Impact of the yeast S0/uS2-cluster ribosomal protein rpS21/eS21 on rRNA folding and the architecture of small ribosomal subunit precursors.” PloS one vol. 18,3 e0283698. 30 Mar. 2023, doi:10.1371/journal.pone.0283698
  5. Katsyv, Alexander et al. “Molecular Basis of the Electron Bifurcation Mechanism in the [FeFe]-Hydrogenase Complex HydABC.” Journal of the American Chemical Society vol. 145,10 (2023): 5696-5709. doi:10.1021/jacs.2c11683
  6. Daiß, Julia L et al. “The human RNA polymerase I structure reveals an HMG-like docking domain specific to metazoans.” Life science alliance vol. 5,11 e202201568. 1 Sep. 2022, doi:10.26508/lsa.202201568
  7. Gfrerer, Sabrina et al. “A Micrarchaeon Isolate Is Covered by a Proteinaceous S-Layer.” Applied and environmental microbiology vol. 88,5 (2022): e0155321. doi:10.1128/AEM.01553-21
  8. Yamaguchi, Tomoko et al. “Structure of the molecular bushing of the bacterial flagellar motor.” Nature communications vol. 12,1 4469. 22 Jul. 2021, doi:10.1038/s41467-021-24715-3
  9. Çoruh, Orkun et al. “Cryo-EM structure of a functional monomeric Photosystem I from Thermosynechococcus elongatus reveals red chlorophyll cluster.” Communications biology vol. 4,1 304. 8 Mar. 2021, doi:10.1038/s42003-021-01808-9
  10. Ariyoshi, Mariko et al. “Cryo-EM structure of the CENP-A nucleosome in complex with phosphorylated CENP-C.” The EMBO journal vol. 40,5 (2021): e105671. doi:10.15252/embj.2020105671
  11. Kishikawa, Jun-Ichi et al. “Mechanical inhibition of isolated Vo from V/A-ATPase for proton conductance.” eLife vol. 9 e56862. 8 Jul. 2020, doi:10.7554/eLife.56862
  12. Merk, Alan et al. “1.8 Å resolution structure of β-galactosidase with a 200 kV CRYO ARM electron microscope.” IUCrJ vol. 7,Pt 4 639-643. 11 Jun. 2020, doi:10.1107/S2052252520006855
  13. Oide, Mao et al. “Energy landscape of domain motion in glutamate dehydrogenase deduced from cryo-electron microscopy.” The FEBS journal vol. 287,16 (2020): 3472-3493. doi:10.1111/febs.15224
  14. Yamada, Yurika et al. “Cardiac muscle thin filament structures reveal calcium regulatory mechanism.” Nature communications vol. 11,1 153. 9 Jan. 2020, doi:10.1038/s41467-019-14008-1
  15. Kato, Takayuki et al. “Structure of the native supercoiled flagellar hook as a universal joint.” Nature communications vol. 10,1 5295. 22 Nov. 2019, doi:10.1038/s41467-019-13252-9

JEOL CRYO ARM 300 - BIBLIOGRAPHY

  1. Li, Chenyao et al. “Rapid small-scale nanobody-assisted purification of ryanodine receptors for cryo-EM.” The Journal of biological chemistry, vol. 300,10 107734. 2 Sep. 2024, doi:10.1016/j.jbc.2024.107734
  2. Li, Huiling et al. “Rift Valley fever virus coordinates the assembly of a programmable E3 ligase to promote viral replication.” Cell, S0092-8674(24)01026-2. 26 Sep. 2024, doi:10.1016/j.cell.2024.09.008
  3. Yang, Jie et al. “Structural basis for the activity of the type VII CRISPR-Cas system.” Nature vol. 633,8029 (2024): 465-472. doi:10.1038/s41586-024-07815-0
  4. Wakabayashi, Taiki et al. “CryoEM-sampling of metastable conformations appearing in cofactor-ligand association and catalysis of glutamate dehydrogenase.” Scientific reports vol. 14,1 11165. 15 May. 2024, doi:10.1038/s41598-024-61793-x
  5. An, Qiyin et al. “Molecular and structural basis of an ATPase-nuclease dual-enzyme anti-phage defense complex.” Cell research vol. 34,8 (2024): 545-555. doi:10.1038/s41422-024-00981-w
  6. Holvec, Samuel et al. “The structure of the human 80S ribosome at 1.9 Å resolution reveals the molecular role of chemical modifications and ions in RNA.” Nature structural & molecular biology, 10.1038/s41594-024-01274-x. 6 Jun. 2024, doi:10.1038/s41594-024-01274-x
  7. Fukawa, Eole et al. “Structural and electrochemical elucidation of biocatalytic mechanisms in direct electron transfer-type D-fructose dehydrogenase.” Electrochimica Acta vol. 490, 144271, 20 Jun. 2024, doi:10.1016/j.electacta.2024.144271.
  8. Galicia, Christian et al. “Structural insights into the GTP-driven monomerization and activation of a bacterial LRRK2 homolog using allosteric nanobodies.” eLife vol. 13 RP94503. 26 Apr. 2024, doi:10.7554/eLife.94503
  9. Odorčić, Ivica et al. “Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform.” Nature communications vol. 15,1 4479. 27 May. 2024, doi:10.1038/s41467-024-48776-2
  10. Ishimaru, Hanako et al. “Epitopes of an antibody that neutralizes a wide range of SARS-CoV-2 variants in a conserved subdomain 1 of the spike protein.” Journal of virology vol. 98,5 (2024): e0041624. doi:10.1128/jvi.00416-24
  11. Watanabe, Satoshi et al. “Structure of full-length ERGIC-53 in complex with MCFD2 for cargo transport.” Nature communications vol. 15,1 2404. 16 Mar. 2024, doi:10.1038/s41467-024-46747-1
  12. Li, Zhiqiang et al. “Cryo-EM structures of Banna virus in multiple states reveal stepwise detachment of viral spikes.” Nature communications vol. 15,1 2284. 13 Mar. 2024, doi:10.1038/s41467-024-46624-x
  13. Liao, Zengwei et al. “Structural insights into thermophilic chaperonin complexes.” Structure (London, England : 1993) vol. 32,6 (2024): 679-689.e4. doi:10.1016/j.str.2024.02.012Kato, Koji et al. “The structure of PSI-LHCI from Cyanidium caldarium provides evolutionary insights into conservation and diversity of red-lineage LHCs.” Proceedings of the National Academy of Sciences of the United States of America vol. 121,11 (2024): e2319658121. doi:10.1073/pnas.2319658121
  14. Tanaka, Mayuki et al. “Boric acid intercepts 80S ribosome migration from AUG-stop by stabilizing eRF1.” Nature chemical biology, 10.1038/s41589-023-01513-0. 24 Jan. 2024, doi:10.1038/s41589-023-01513-0
  15. Tani, Kazutoshi et al. “High-resolution structure and biochemical properties of the LH1-RC photocomplex from the model purple sulfur bacterium, Allochromatium vinosum.” Communications biology vol. 7,1 176. 12 Feb. 2024, doi:10.1038/s42003-024-05863-w
  16. Tomono, Junta et al. “Direct visualization of ribosomes in the cell-free system revealed the functional evolution of aminoglycoside.” Journal of biochemistry, mvae002. 16 Jan. 2024, doi:10.1093/jb/mvae002
  17. Bloch, Yehudi et al. “Structures of complete extracellular receptor assemblies mediated by IL-12 and IL-23.” Nature structural & molecular biology, 10.1038/s41594-023-01190-6. 29 Jan. 2024, doi:10.1038/s41594-023-01190-6
  18. Acar, Delphine Diana et al. “Integrating artificial intelligence-based epitope prediction in a SARS-CoV-2 antibody discovery pipeline: caution is warranted.” EBioMedicine vol. 100 (2024): 104960. doi:10.1016/j.ebiom.2023.104960
  19. Li, Liushuai et al. “Neutralizing monoclonal antibodies against the Gc fusion loop region of Crimean-Congo hemorrhagic fever virus.” PLoS pathogens vol. 20,2 e1011948. 1 Feb. 2024, doi:10.1371/journal.ppat.1011948
  20. Artigas, Pablo et al. “A Na pump with reduced stoichiometry is up-regulated by brine shrimp in extreme salinities.” Proceedings of the National Academy of Sciences of the United States of America vol. 120,52 (2023): e2313999120. doi:10.1073/pnas.2313999120
  21. Suzuki Yohei et al. “Essential Insight of Direct Electron Transfer-Type Bioelectrocatalysis by Membrane-Bound d-Fructose Dehydrogenase with Structural Bioelectrochemistry.” ACS Catalysis 2023 13 (20), 13828-13837, doi: 10.1021/acscatal.3c03769
  22. Akiba, Hiroki et al. “Development of a 1:1-binding biparatopic anti-TNFR2 antagonist by reducing signaling activity through epitope selection.” Communications biology vol. 6,1 987. 27 Sep. 2023, doi:10.1038/s42003-023-05326-8
  23. Liu, Qianyun et al. “Broadly neutralizing antibodies derived from the earliest COVID-19 convalescents protect mice from SARS-CoV-2 variants challenge.” Signal transduction and targeted therapy vol. 8,1 347. 14 Sep. 2023, doi:10.1038/s41392-023-01615-0
  24. Bui, Han Ba et al. “Cryo-EM structures of human zinc transporter ZnT7 reveal the mechanism of Zn2+ uptake into the Golgi apparatus.” Nature communications vol. 14,1 4770. 8 Aug. 2023, doi:10.1038/s41467-023-40521-5
  25. Yang, Shangyu et al. “Structural and functional insights into the modulation of T cell costimulation by monkeypox virus protein M2.” Nature communications vol. 14,1 5186. 25 Aug. 2023, doi:10.1038/s41467-023-40748-2
  26. Abe, Kazuhiro et al. “Deep learning driven de novo drug design based on gastric proton pump structures.” Communications biology vol. 6,1 956. 19 Sep. 2023, doi:10.1038/s42003-023-05334-8
  27. Zhao, Yan et al. “Cryo-EM structures of African swine fever virus topoisomerase.” mBio vol. 14,5 (2023): e0122823. doi:10.1128/mbio.01228-23
  28. Torino, Stefania et al. “Time-resolved cryo-EM using a combination of droplet microfluidics with on-demand jetting.” Nature methods vol. 20,9 (2023): 1400-1408. doi:10.1038/s41592-023-01967-z
  29. Anzai, Itsuki et al. “Characterization of a neutralizing antibody that recognizes a loop region adjacent to the receptor-binding interface of the SARS-CoV-2 spike receptor-binding domain.” Microbiology spectrum, e0365523. 28 Feb. 2024, doi:10.1128/spectrum.03655-23
  30. Adachi Taiki et al. “Experimental and Theoretical Insights into Bienzymatic Cascade for Mediatorless Bioelectrochemical Ethanol Oxidation with Alcohol and Aldehyde Dehydrogenases.” ACS Catalysis 2023 13 (12), 7955-7965. doi: 10.1021/acscatal.3c01962
  31. Li, Long et al. “Spatiotemporal Landscape for the Sophisticated Transformation of Protein Assemblies Defined by Multiple Supramolecular Interactions.” ACS nano vol. 17,15 (2023): 15001-15011. doi:10.1021/acsnano.3c04029
  32. Fujita, Junso et al. “Structures of a FtsZ single protofilament and a double-helical tube in complex with a monobody.” Nature communications vol. 14,1 4073. 10 Jul. 2023, doi:10.1038/s41467-023-39807-5
  33. Wang, Xiaoshen et al. “Structural insights into mechanisms of Argonaute protein-associated NADase activation in bacterial immunity.” Cell research vol. 33,9 (2023): 699-711. doi:10.1038/s41422-023-00839-7
  34. De Gieter, Steven et al. “Sterol derivative binding to the orthosteric site causes conformational changes in an invertebrate Cys-loop receptor.” eLife vol. 12 e86029. 3 Jul. 2023, doi:10.7554/eLife.86029
  35. Burton-Smith, Raymond N et al. “Six states of Enterococcus hirae V-type ATPase reveals non-uniform rotor rotation during turnover.” Communications biology vol. 6,1 755. 28 Jul. 2023, doi:10.1038/s42003-023-05110-8
  36. Maki-Yonekura, Saori et al. “Measurement of charges and chemical bonding in a cryo-EM structure.” Communications chemistry vol. 6,1 98. 31 May. 2023, doi:10.1038/s42004-023-00900-x
  37. Sleutel, Mike et al. “Structural analysis and architectural principles of the bacterial amyloid curli.” Nature communications vol. 14,1 2822. 17 May. 2023, doi:10.1038/s41467-023-38204-2
  38. Isaacs, Ariel et al. “Structure and antigenicity of divergent Henipavirus fusion glycoproteins.” Nature communications vol. 14,1 3577. 16 Jun. 2023, doi:10.1038/s41467-023-39278-8
  39. Gupta, Jyoti et al. “Plakophilin-3 Binds the Membrane and Filamentous Actin without Bundling F-Actin.” International journal of molecular sciences vol. 24,11 9458. 29 May. 2023, doi:10.3390/ijms24119458
  40. Pei, Xudong et al. “Cryogenic electron ptychographic single particle analysis with wide bandwidth information transfer.” Nature communications vol. 14,1 3027. 25 May. 2023, doi:10.1038/s41467-023-38268-0
  41. Ishimaru, Hanako et al. “Identification and Analysis of Monoclonal Antibodies with Neutralizing Activity against Diverse SARS-CoV-2 Variants.” Journal of virology, e0028623. 16 May. 2023, doi:10.1128/jvi.00286-23
  42. Fernandez, Maricruz et al. “AFM-based force spectroscopy unravels stepwise formation of the DNA transposition complex in the widespread Tn3 family mobile genetic elements.” Nucleic acids research vol. 51,10 (2023): 4929-4941. doi:10.1093/nar/gkad241
  43. Tsirigotaki, Alexandra et al. “Mechanism of receptor assembly via the pleiotropic adipokine Leptin.” Nature structural & molecular biology vol. 30,4 (2023): 551-563. doi:10.1038/s41594-023-00941-9
  44. Kozai, Daisuke et al. “Recognition Mechanism of a Novel Gabapentinoid Drug, Mirogabalin, for Recombinant Human α2δ1, a Voltage-Gated Calcium Channel Subunit.” Journal of molecular biology vol. 435,10 (2023): 168049. doi:10.1016/j.jmb.2023.168049
  45. Chen, Zhenghao et al. “Cryo-EM structures of human SPCA1a reveal the mechanism of Ca2+/Mn2+ transport into the Golgi apparatus.” Science advances vol. 9,9 (2023): eadd9742. doi:10.1126/sciadv.add9742
  46. Himiyama, Tomoki et al. “Unnaturally Distorted Hexagonal Protein Ring Alternatingly Reorganized from Two Distinct Chemically Modified Proteins.” Bioconjugate chemistry, 10.1021/acs.bioconjchem.3c00057. 8 Mar. 2023, doi:10.1021/acs.bioconjchem.3c00057
  47. Rangarajan, Erumbi S et al. “Distinct inter-domain interactions of dimeric versus monomeric α-catenin link cell junctions to filaments.” Communications biology vol. 6,1 276. 16 Mar. 2023, doi:10.1038/s42003-023-04610-x
  48. Nagao, Ryo et al. “Structure of a monomeric photosystem I core associated with iron-stress-induced-A proteins from Anabaena sp. PCC 7120.” Nature communications vol. 14,1 920. 17 Feb. 2023, doi:10.1038/s41467-023-36504-1
  49. Fujita, Junso et al. “Epoxidized graphene grid for highly efficient high-resolution cryoEM structural analysis.” Scientific reports vol. 13,1 2279. 8 Feb. 2023, doi:10.1038/s41598-023-29396-0
  50. Nakanishi, Atsuko et al. “Cryo-EM analysis of V/A-ATPase intermediates reveals the transition of the ground-state structure to steady-state structures by sequential ATP binding.” The Journal of biological chemistry, 102884. 7 Jan. 2023, doi:10.1016/j.jbc.2023.102884
  51. Yin, Jiayi et al. “Structural transitions during the cooperative assembly of baculovirus single-stranded DNA-binding protein on ssDNA.” Nucleic acids research vol. 50,22 (2022): 13100-13113. doi:10.1093/nar/gkac1142
  52. Wang, Xiaoshen et al. “Target RNA-guided protease activity in type III-E CRISPR-Cas system.” Nucleic acids research vol. 50,22 (2022): 12913-12923. doi:10.1093/nar/gkac1151
  53. Rangarajan, Erumbi S et al. “The nematode HMP1/α-catenin has an extended α-helix when bound to actin filaments.” The Journal of biological chemistry, 102817. 17 Dec. 2022, doi:10.1016/j.jbc.2022.102817
  54. Nakano, Atsuki et al. “Structural basis of unisite catalysis of bacterial F0F1-ATPase.” PNAS nexus vol. 1,3 pgac116. 11 Jul. 2022, doi:10.1093/pnasnexus/pgac116
  55. Otsubo, Ryota et al. “Human antibody recognition and neutralization mode on the NTD and RBD domains of SARS-CoV-2 spike protein.” Scientific reports vol. 12,1 20120. 22 Nov. 2022, doi:10.1038/s41598-022-24730-4
  56. Lemonidis, Kimon et al. “Structural and biochemical basis of interdependent FANCI-FANCD2 ubiquitination.” The EMBO journal, e111898. 17 Nov. 2022, doi:10.15252/embj.2022111898
  57. Yu, Guimei et al. “Structure and function of a bacterial type III-E CRISPR-Cas7-11 complex.” Nature microbiology vol. 7,12 (2022): 2078-2088. doi:10.1038/s41564-022-01256-z
  58. Shkumatov, Alexander V et al. “Structural insight into Tn3 family transposition mechanism.” Nature communications vol. 13,1 6155. 18 Oct. 2022, doi:10.1038/s41467-022-33871-z
  59. Haney, Joanne et al. “Coinfection by influenza A virus and respiratory syncytial virus produces hybrid virus particles.” Nature microbiology vol. 7,11 (2022): 1879-1890. doi:10.1038/s41564-022-01242-5
  60. Fréchin, Léo et al. “High-resolution cryo-EM performance comparison of two latest-generation cryo electron microscopes on the human ribosome.” Journal of structural biology, vol. 215,1 107905. 12 Oct. 2022, doi:10.1016/j.jsb.2022.107905
  61. Li, Jiannan et al. “Structure of cyanobacterial photosystem I complexed with ferredoxin at 1.97 Å resolution.” Communications biology vol. 5,1 951. 12 Sep. 2022, doi:10.1038/s42003-022-03926-4
  62. Manik, Mohammad K et al. “Cyclic ADP ribose isomers: Production, chemical structures, and immune signaling.” Science (New York, N.Y.) vol. 377,6614 (2022): eadc8969. doi:10.1126/science.adc8969
  63. Maeda, Ryota et al. “A panel of nanobodies recognizing conserved hidden clefts of all SARS-CoV-2 spike variants including Omicron.” Communications biology vol. 5,1 669. 6 Jul. 2022, doi:10.1038/s42003-022-03630-3
  64. Kawakami, Keisuke et al. “Core and rod structures of a thermophilic cyanobacterial light-harvesting phycobilisome.” Nature communications vol. 13,1 3389. 17 Jun. 2022, doi:10.1038/s41467-022-30962-9
  65. Yoshikawa, Tatsushi et al. “Multiple electron transfer pathways of tungsten-containing formate dehydrogenase in direct electron transfer-type bioelectrocatalysis.” Chemical communications (Cambridge, England) vol. 58,45 6478-6481. 1 Jun. 2022, doi:10.1039/d2cc01541b
  66. Kishikawa, J et al. “Structural snapshots of V/A-ATPase reveal the rotary catalytic mechanism of rotary ATPases.” Nature communications vol. 13,1 1213. 8 Mar. 2022, doi:10.1038/s41467-022-28832-5
  67. Hogrel, Gaëlle et al. “Cyclic nucleotide-induced helical structure activates a TIR immune effector.” Nature vol. 608,7924 (2022): 808-812. doi:10.1038/s41586-022-05070-9
  68. Kiss-Szemán, Anna J et al. “Cryo-EM structure of acylpeptide hydrolase reveals substrate selection by multimerization and a multi-state serine-protease triad.” Chemical science vol. 13,24 7132-7142. 18 May. 2022, doi:10.1039/d2sc02276a
  69. Shi, Yun et al. “Structural basis of SARM1 activation, substrate recognition, and inhibition by small molecules.” Molecular cell vol. 82,9 (2022): 1643-1659.e10. doi:10.1016/j.molcel.2022.03.007
  70. Tani, Kazutoshi et al. “A Ca2+-binding motif underlies the unusual properties of certain photosynthetic bacterial core light-harvesting complexes.” The Journal of biological chemistry vol. 298,6 (2022): 101967. doi:10.1016/j.jbc.2022.101967
  71. Watanabe, Ryoto et al. “Particle Morphology of Medusavirus Inside and Outside the Cells Reveals a New Maturation Process of Giant Viruses.” Journal of virology vol. 96,7 (2022): e0185321. doi:10.1128/jvi.01853-21
  72. Kato, Koji et al. “Structural basis for the absence of low-energy chlorophylls in a photosystem I trimer from Gloeobacter violaceus.” eLife vol. 11 e73990. 11 Apr. 2022, doi:10.7554/eLife.73990
  73. Li, Na et al. “Cryo-EM structure of glycoprotein C from Crimean-Congo hemorrhagic fever virus.” Virologica Sinica vol. 37,1 (2022): 127-137. doi:10.1016/j.virs.2022.01.015
  74. Tanaka, Saki et al. “Structural Basis for Binding of Potassium-Competitive Acid Blockers to the Gastric Proton Pump.” Journal of medicinal chemistry vol. 65,11 (2022): 7843-7853. doi:10.1021/acs.jmedchem.2c00338
  75. Kuzuya, Maki et al. “Structures of human pannexin-1 in nanodiscs reveal gating mediated by dynamic movement of the N terminus and phospholipids.” Science signaling vol. 15,720 (2022): eabg6941. doi:10.1126/scisignal.abg6941
  76. Kolata, Piotr, and Rouslan G Efremov. “Structure of Escherichia coli respiratory complex I reconstituted into lipid nanodiscs reveals an uncoupled conformation.” eLife vol. 10 e68710. 26 Jul. 2021, doi:10.7554/eLife.68710
  77. Yu, Huaxin et al. “Cryo-EM structure of monomeric photosystem II at 2.78 Å resolution reveals factors important for the formation of dimer.” Biochimica et biophysica acta. Bioenergetics vol. 1862,10 (2021): 148471. doi:10.1016/j.bbabio.2021.148471
  78. Hiragi, Keito et al. “Structural insights into the targeting specificity of ubiquitin ligase for S. cerevisiae isocitrate lyase but not C. albicans isocitrate lyase.” Journal of structural biology vol. 213,3 (2021): 107748. doi:10.1016/j.jsb.2021.107748
  79. Kawamoto, Akihiro et al. “Native flagellar MS ring is formed by 34 subunits with 23-fold and 11-fold subsymmetries.” Nature communications vol. 12,1 4223. 9 Jul. 2021, doi:10.1038/s41467-021-24507-9
  80. Pradhan, Brajabandhu et al. “Endospore Appendages: a novel pilus superfamily from the endospores of pathogenic Bacilli.” The EMBO journal vol. 40,17 (2021): e106887. doi:10.15252/embj.2020106887
  81. Efremov, Rouslan G, and Annelore Stroobants. “Coma-corrected rapid single-particle cryo-EM data collection on the CRYO ARM 300.” Acta crystallographica. Section D, Structural biology vol. 77,Pt 5 (2021): 555-564. doi:10.1107/S2059798321002151
  82. Maki-Yonekura, Saori et al. “Advances in cryo-EM and ED with a cold-field emission beam and energy filtration -Refinements of the CRYO ARM 300 system in RIKEN SPring-8 center.” Microscopy (Oxford, England) vol. 70,2 (2021): 232-240. doi:10.1093/jmicro/dfaa052
  83. Sutherland, Hazel et al. “The Cryo-EM Structure of Vesivirus 2117 Highlights Functional Variations in Entry Pathways for Viruses in Different Clades of the Vesivirus Genus.” Journal of virology vol. 95,13 (2021): e0028221. doi:10.1128/JVI.00282-21
  84. Hamaguchi, Tasuku et al. “Structure of the far-red light utilizing photosystem I of Acaryochloris marina.” Nature communications vol. 12,1 2333. 20 Apr. 2021, doi:10.1038/s41467-021-22502-8
  85. Kato, Koji et al. “High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams.” Communications biology vol. 4,1 382. 22 Mar. 2021, doi:10.1038/s42003-021-01919-3
  86. Rennie, Martin L et al. “Structural basis of FANCD2 deubiquitination by USP1-UAF1.” Nature structural & molecular biology vol. 28,4 (2021): 356-364. doi:10.1038/s41594-021-00576-8
  87. Takaba, Kiyofumi et al. “Protein and Organic-Molecular Crystallography With 300kV Electrons on a Direct Electron Detector.” Frontiers in molecular biosciences vol. 7 612226. 6 Jan. 2021, doi:10.3389/fmolb.2020.612226
  88. Naitow, Hisashi et al. “Apple latent spherical virus structure with stable capsid frame supports quasi-stable protrusions expediting genome release.” Communications biology vol. 3,1 488. 4 Sep. 2020, doi:10.1038/s42003-020-01217-4
  89. Fislage, Marcus et al. “Assessing the JEOL CRYO ARM 300 for high-throughput automated single-particle cryo-EM in a multiuser environment.” IUCrJ vol. 7,Pt 4 707-718. 11 Jun. 2020, doi:10.1107/S2052252520006065
  90. Takaba, Kiyofumi et al. “Collecting large datasets of rotational electron diffraction with ParallEM and SerialEM.” Journal of structural biology vol. 211,2 (2020): 107549. doi:10.1016/j.jsb.2020.107549
  91. Rennie, Martin L et al. “Differential functions of FANCI and FANCD2 ubiquitination stabilize ID2 complex on DNA.” EMBO reports vol. 21,7 (2020): e50133. doi:10.15252/embr.202050133
  92. Yonekura, Koji et al. “A new cryo-EM system for electron 3D crystallography by eEFD.” Journal of structural biology vol. 206,2 (2019): 243-253. doi:10.1016/j.jsb.2019.03.009
  93. Kato, Takayuki, et al. “CryoTEM with a Cold Field Emission Gun That Moves Structural Biology into a New Stage.” Microscopy and Microanalysis, vol. 25, no. S2, 2019, pp. 998–999., doi:10.1017/S1431927619005725.
  94. Bhella, David. “Cryo-electron microscopy: an introduction to the technique, and considerations when working to establish a national facility.” Biophysical reviews vol. 11,4 (2019): 515-519. doi:10.1007/s12551-019-00571-w
  95. Hamaguchi, Tasuku et al. “A new cryo-EM system for single particle analysis.” Journal of structural biology vol. 207,1 (2019): 40-48. doi:10.1016/j.jsb.2019.04.011
Attached Files
Showing 0 Comment


Comments are closed.

Other Resources

  • Image Gallery
    View a selection of electron images
  • FAQs
    See answers from questions often asked about our SEM and Surface Analysis instruments
  • Links & Resources
    View our page of useful and interesting links to various electron microscopy resources
  • Videos
    View some product presentations of our instruments
  • SEM Theory and SEM Training
    Learn about basic theory, physical operation, and practical applications for SEM
    Basics of SEM
    Learn about the basics of scanning electron microscopy
    JEOLink Newsletter
    Several times a year, we publish and send out a newsletter to our customers. They can also be viewed here
    © Copyright 2024 by JEOL USA, Inc.
    Terms of Use
    |
    Privacy Policy
    |
    Cookie Preferences