Transmission Electron Microscopy of Stainless Steel for Stents
Transmission Electron Microscopy of Stainless Steel for Stents
Medical device materials are analyzed at all stages of design and service, from initial fabrication and development of a prototype, through examination of the device or surrounding tissues following removal from the patient. The resulting understanding of materials properties and related performance can prevent device failure, ensure patient safety, and drive the next innovations in materials and device design. To acquire this understanding, microstructural characteristics such as crystalline phase, presence of secondary phases, and uniformity of elemental distribution must be assessed and combined with results from performance testing to determine whether the alloy is suitable for the intended application. Transmission electron microscopy (TEM) is an ideal technique for analyzing metals and other materials to gain an understanding of their structural and elemental properties on the sub-micrometer to atomic scale. The method can be applied to materials at various stages of processing, to finished products, and even to wear debris, such as sub-micrometer particles removed from device surfaces or patient tissues.
Analysis of Medical Devices
The JEOL JEM-3010 transmission electron microscope at McCrone Associates is configured for materials analysis. It is capable of 1.2 million times magnification, and can resolve features as small as 0.14 nanometer. Along with this high-resolution imaging capability, electron diffraction analysis allows for crystalline phase identification. Additionally, an energy dispersive X-ray spectrometry (EDS) system attached to the microscope provides elemental identification of features or areas as small as three nanometers.
Download Below to Read More.